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Ab s t r Ac t
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer, which accounts for about 81% percent of all lung cancer 
cases. Despite advances in NSCLC diagnosis and treatment, the mortality rate is still high. Patients with NSCLC have a 5-year survival rate of 
only 21%. NSCLC is currently diagnosed at an advanced stage when cancer has already metastasized. Hence, it is essential to elucidate the 
molecular mechanisms associated with NSCLC pathogenesis and identify early diagnostic or predictive biomarkers. Circulating miRNAs 
might act as non-invasive blood-based biomarkers for NSCLC diagnosis and prognosis. In this study, we used previously published 
microarray datasets from Gene Expression Omnibus database and identified 12 down-regulated miRNAs in tissue and blood of NSCLC. 
Further analysis identified three miRNAs that could serve as biomarkers in the diagnosis of NSCLC: miR-140-3p, miR-29c, and miR-199a. 
The functional enrichment analysis of the candidate microRNA’s target genes disclosed various overrepresented pathways associated 
with malignancy progression. Seven target genes are identified as hub genes of the PPI network and hold strong predictive power. 
In addition, the three-gene combination (IL6, SNAI1, and CDK6) shows a hazard ratio of more than one (hr = 1.5) and P-value <0.002. 
Since the expression levels of these three miRNAs were significantly decreased in both tissue and blood, measuring miRNA expression 
in the blood also gives information on its expression in tissue. Therefore, these three microRNAs could be used as NSCLC diagnostic and 
prognostic biomarkers.
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In t r o d u c t I o n

Lung cancer is the most common cause of cancer-related deaths 
globally, with 1.8 million deaths annually.[1] It is the most commonly 
diagnosed malignancy in males, followed by colorectal, liver, and 
esophageal cancers; while in females, it is the most frequent cause 
of cancer-related deaths after breast cancer.[1] Based on histology, 
lung cancers are classified into two major groups: Non-small cell 
lung cancer (NSCLC) and small cell lung cancer (SCLC).[2] NSCLC is 
the most common type of lung cancer, which accounts for about 
81% of all lung cancer cases.[2] Furthermore, NSCLC is divided 
into three subtypes: Lung adenocarcinoma, lung squamous cell 
carcinoma, and large cell carcinoma.[2] Despite advances in NSCLC 
diagnosis and treatment, the mortality rate is still high. Patients 
with NSCLC have a 5-year survival rate of only 21%.[3] The lethality 
of NSCLC is often attributed to a lack of early diagnosis, metastasis, 
and the occurrence of drug resistance. NSCLC is currently 
diagnosed at an advanced stage when the cancer has already 
metastasized. Hence, it is essential to elucidate the molecular 
mechanisms associated with NSCLC pathogenesis and identify 
early diagnostic or predictive biomarkers.

MicroRNAs (miRNAs) represent a class of endogenous, small 
(20–24 nucleotides), and non-coding single-stranded RNAs, 
which specifically bind to the 3’ UTR of mRNA targets to inhibit 
post-transcriptional gene regulation[4,5] A single miRNA can 
regulate hundreds of different target genes and more than 50% 
of the miRNAs are associated with cancer initiation, progression, 
and metastasis.[6-8] Therefore, some miRNAs that are leaked by 
cancer cells and circulate in a stable form in the circulation (blood) 
can be used as early non-invasive biomarkers for different cancer 
types. In a previous study, several miRNAs differentially expressed 
between NSCLC and controls have been identified in tissue and 
blood samples.[9-11]
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Blood-based miRNAs can be profiled using different 
techniques, including next-generation sequencing, microarray, 
and real-time PCR. In a previous study, microarray-based miRNA 
expression detection has been used extensively to identify 
biomarkers for different types of cancer, such as pancreatic ductal 
adenocarcinoma, breast cancer, colon cancer, and lung cancer.[12-14] 
In a recent study, two serum miRNAs (miR-1228-3p and miR-
181a-5p) showed a promising result for the early detection of 
lung cancer, indicating that these miRNAs might be used as non-
invasive biomarkers for lung cancer.[15]

Studies have demonstrated significant interactions between 
gene alterations and cancer development in different types of 
tumors.[16] A recent study showed that high expression of Notch3 
and CD44 was associated with rapid NSCLC progression.[17,18] A 
recent study conducted by Morris et  al. demonstrated that the 
expression levels of the FPR1 gene in blood samples predict both 
NSCLC and SCLC.[19] In a recent study, miR-30d has been shown 
to be a tumor suppressor in the progression of NSCLC.[20] MiR-
598 functions as tumor suppressor in NSCLC by targeting several 
oncogenic genes.[21] However, the exact mechanism of miRNAs 
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and genes dysregulated in NSCLC pathogenesis is still not properly 
understood.[22]

Recently, gene expression microarray and high-throughput 
RNA-sequencing have been frequently used technology applied 
in cancer biomarker identification.[23] In this study, four previously 
published miRNA microarray datasets (GSE137140, GSE93300, 
GSE94536, and GSE53882) were used to identify differentially 
expressed miRNAs in NSCLC patients compared with that 
from normal healthy controls. MicroRNA target prediction 
(TargetScan, PicTar, and miRanda) and gene ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis were performed to identify possible pathways involved. 
Finally, to further validate the potential of the identified miRNAs 
as candidate biomarkers of NSCLC, we performed survival and 
receiver operating characteristic (ROC) analysis.

Me t h o d s

Dataset Selection
The Gene Expression Omnibus (GEO) is a freely accessible online 
database that contains high-throughput functional genomic 
data from various studies.[24,25] GEO datasets were searched for the 
keywords blood (serum or plasma), NSCLC, Human, and miRNA 
profiling through the NCBI website. Four miRNA microarray 
datasets, GSE137140, GSE93300, GSE94536, and GSE53882 
were selected for analysis [Table 1].[26-28] The GSE137140 dataset 
contained serum miRNA profiling data consisting of 1566 
NSCLC samples and 1774 control samples, while the other two 
datasets (GSE93300 and GSE94536) contained plasma miRNA 
profiling data. In addition, we selected tissue miRNA data from 
the GSE53882 dataset, consisting of 397 NSCLC tissue and 151 
control samples.[29]

Identification of Differentially Expressed miRNAs
All the microarray datasets were analyzed for differentially 
expressed miRNAs (DEmiRNAs) in the R environment (R version 3.0, 
www.r-project.org) and the bioconductor limma package.[20] 
The statistical significance of the fold change was calculated for 
each miRNA by Student’s t-test. The normal distribution of gene 
expression values was verified using the online tool GEO2R. 
Based on differential expression analysis, the DEmiRNAs were 
separated based on up-regulation or down-regulation. The 
cutoffs for differentially expressed miRNAs were set as absolute 
fold-change >2 and P-value of <0.05. To visualize the number of 
differently expressed miRNAs for each dataset, Venn diagrams 
were plotted.[21] GraphPad Prism software 4.0 (USA) was used to 
construct a heatmap.

Predicting Target Genes
The target genes of the DE-miRNAs were predicted by miRDB 
(mirdb.org), TargetScan (www.targetscan.org), and mirTarBase 
(https://mirtarbase.cuhk.edu.cn/) prediction software.[30] The target 
gene list was analyzed and submitted to PANTHER for enrichment 
analysis of the significantly overrepresented GO biological 
processes and molecular function terms.[31] Fisher’s exact test 
was used to determine statistical significance. P-value<0.05 was 
considered as the statistical significance level.

PPI and miRNA-mRNA Network
The candidate genes identified in this study were investigated in 
the STRING database, to construct a PPI network.[32] The confidence 
level of PPI was set to the highest (0.9). Then, cytoscape was used 
to create and visualize the graphs of the PPI network. In addition, 
the cytoscape was also used to screen hub DEGs with the node 
degree and clustering coefficient. Genes were considered as hub 
genes if their connection degrees are ≥20. In addition, the MCODE 
software was used within cytoscape to analyze PPI network 
modules with default cutoff criteria (degree cutoff ≥ 2, node score 
cutoff ≥2, K-core ≥ 2, and Max depth = 100). The STRING plugin was 
used for functional enrichment analysis on individual modules.

Analysis of Hub Genes
Kaplan–Meier survival curves were constructed to visualize two 
subtypes of NSCLC, adenocarcinoma (ADC), and squamous cell 
carcinoma (SCC).[33] The Kaplan–Meier plotter (http://www.kmplot.
com) and an in silico web tool were used to merge the gene 
expression data from TCGA and the GEO database. Differentially 
expressed hub genes were identified using cytoscape. Finally, 
the hub genes were submitted to the Kaplan–Meier plotter (KM 
plotter). The patients’ survival was analyzed using survival curves. 
For each gene, a hazard ratio (HR) with 95% confidence intervals 
and a log-rank P-value was calculated. Finally, the GEPIA software 
was used for the analysis of hub genes.[34]

Identification of Candidate miRNA Biomarkers for NSCLC
The Kaplan–Meier estimations were used to calculate the survival 
function and survival curves for the differentially expressed 
miRNAs. MiRNAs with statistically significant (log-rank p-value) 
prognostic potential were further analyzed using TargetScan, 
which predict potential miRNA targets. The log2 transformation 
was applied to identify differentially expressed miRNAs in lung 
adenocarcinoma and lung squamous cell carcinoma. GraphPad 
Prism 6.0 software (USA) was used to create the ROC curve.

re s u lts

Identification of Differentially Expressed miRNAs
GSE137140, GSE93300, GSE94536, and GSE53882 were selected 
for analysis. Additional quantile normalization was performed 
for GSE93300 datasets. The GSE137140 dataset showed 280 
up-regulated and 2200 down-regulated miRNAs. The GSE93300 
dataset showed 2161 up-regulated and only 58 down-regulated 
miRNAs, The GSE94536 dataset contained 242 down-regulated 
miRNAs; however, no significantly up-regulated miRNAs were 

Table 1: Summary of four datasets employed in this study
Dataset ID Platform No. of 

NSCLC 
samples

No. of 
control 

samples

References

GSE137140 GPL21263 1566 1774 [26]
GSE93300 GPL21576 9 4 [27]
GSE94536 GPL21576 6 3 [28]
GSE53882 GPL18130 397 151 [29]
Total NA 1978 1932
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found. Finally, the GSE53882 dataset showed 550 up-regulated 
and 564 down-regulated miRNAs.

The down-regulated differentially expressed miRNAs 
(DE-miRNAs) from each of the four datasets were entered into the 
web-based program VENNY 2.0 to generate 4-way Venn figures of 
overlapping differentially expressed miRNAs [Figure  1]. Thirteen 
differentially expressed miRNAs were common to all four datasets 
and 54 differentially expressed miRNAs were identified in three out 
of four microarray datasets. For further analysis, the 13 overlappings 
differentially expressed miRNAs were chosen, and their log fold-
change values were calculated for each dataset [Figure 2].

Target Gene Prediction and Functional Enrichment 
Analysis of Differentially Expressed miRNAs
We identified 289 target genes for 12 differentially expressed 
miRNAs using TargetScan, mirTarBase, miRdb, and miRwalk. The 

expression of these genes is found to be over-expressed in NSCLCs 
because the miRNAs that regulate them are down-regulated. The 
predicted target genes of these differentially expressed miRNAs 
were analyzed using PANTHER and showed significantly enriched 
GO, various molecular functions, and biological processes. The 
top enriched biological processes and molecular functions are all 
involved in cancer progression, invasion, and metastasis.

Furthermore, it was observed that the most of the enriched 
biological processes were related to the epithelial to mesenchymal 
transition (EMT), phosphorylation of pathway-restricted SMAD 
proteins (17.11  times), heterochromatin assembly (12.21  times), 
cell growth and proliferation, negative regulation of gene silencing 
by miRNAs (11.45 times), and response to cholesterol. In addition, 
many other candidate miRNA target genes related to cellular 
components and molecular functions were also identified, which 
relate to transcription, protein kinase activity, transcription, and 
chromatin binding. In addition, PANTHER analysis applied to the 
GO cellular component terms showed that the RISC complex was 
enriched by 14.57 times.

PPI Network Analysis
We constructed a comprehensive protein-protein interaction 
network from 290 target genes using the STRING database. The 
result identified 678 interactions between nodes (average node 
degree of 3.89) [Figure  3]. The expected number of interactions 
was 498; the p-value for this high number of overlaps was <1.2E-
15. Hub gene network connections were uploaded to cytoscape 
for visualization using the cytoscape plugin app MCODE or 
ClusterONE and network analyzer.

MCODE was used to identify the functional modules of the 
highly interconnected clusters of genes in the cytoscape network. 
Using MCODE algorithms, we identified eight modules. Among 
them, the top 2 modules are displayed in Figure  4. Module 1 
consists of ten genes, including mitogen-activated protein kinase 
1, peroxisome proliferator-activated receptor-gamma, snail family 
transcriptional repressor 1, interleukin-6, fibroblast growth factor 
2, hepatocyte growth factor, estrogen receptor 1, mesenchymal-
epithelial transition, hypoxia-inducible factor 1 subunit alpha, 
and SMAD2 with 42 interactions between them. KEGG pathway 
enrichment analysis of the genes in the module disclosed that nine 
out of ten genes excluding SANI1 were significantly enriched in 
cancer-related pathways. Furthermore, GO analysis revealed that 
all these genes are part of biological processes, such as positive 
regulation of transcription, and signal transduction pathway. 
Furthermore, Module 2 consists of 15 genes with 35 interactions 
between them. Among them, five out of 15 genes were involved 
in chromatid separation. Moreover, hub genes in the network 
were selected using network analyzer. Finally, we identified eight 
hub genes that pass the cutoff criteria: MAPK1, IL6, FGF2, SMAD2, 
SNAI1, DICER1, CDK6, and HGF.

Hub Gene Survival Analysis
For each hub gene, Kaplan–Meier survival curves for patients with 
lung adenocarcinoma and squamous cell carcinoma were plotted, 
and the log-rank test was used to assess statistical significance. 
NSCLC patients were split into two groups with high expression of 
each gene (above median) and low expression (below or equal to 
the median). The survival analysis identified seven of the ten genes 
which were statistically significantly different between patients 

Figure 1: Four-set Venn diagram of the overlap of significantly 
differentially expressed miRNAs

Figure 2: Heatmap shows the log fold change of the DEmiRNAs. The 
green colour indicates a low expression value and the red colour 

denotes a high expression value
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with low and high expression. Consistent with these results, 
we also found that up-regulation of three genes (interleukin-6, 
snail family transcriptional repressor 1, and cell division protein 
kinase 6) was significantly associated with decreased survival and 
down-regulation of five genes (estrogen Receptor 1, fibroblast 
growth factor 2, SMAD family member 2, hepatocyte growth 

factor, DICER1, and hepatocyte growth factor) was significantly 
associated with poor prognosis [Figure 5]. Among the entire hub 
gene, SMAD2 showed the lowest HR (0.67) with a p-value of 2.9E-
06. Taken together, this study suggests that these eight genes 
could hold promise as prognostic biomarkers of NSCLC. Among 
the eight most significant gene networks, the results indicated that 
IL6 genes tend to be higher degree nodes in the large PPI network.

In addition, we performed three genes set (IL6, SNAI1, and 
CDK6) signature analyses to find a panel of genes whose expression 
patterns correlated with overall survival. We found statistically 
significant overall survival between the high and low expressions 
group. Compared to each of the three genes alone, the HR for 
overall survival was higher for the combined three genes group 
with high prognostic power [Figure 6].

Identification of Potential miRNA Biomarkers for 
NSCLC
Kaplan–Meier survival analysis was used for the 12 differentially 
expressed miRNAs on 871 lung adenocarcinoma or lung squamous 
cell carcinoma patients. The results identified miRNAs (miR-140, 
miR-29c, and miR-199a) with p-values lower than 0.05 and HR 0.69 
[Figure 7]. However, the other nine miRNAs did not have significant 
HRs. In addition, further analysis suggested that the up-regulation 

Figure 4: The highly interconnected genes in Module 1 and Module 
2. Colours are arbitrary and each line indicates relationships between 

groups of genes. The first module consists of ten genes with 42 
interactions, and the second module contains 20 genes with 35 

interactions

Figure 3: Protein-Protein Interaction [STRING-V11.5]
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of these three miRNAs in NSCLC was significantly associated with 
improved outcomes. In lung adenocarcinoma and lung squamous 
cell carcinoma tumour tissue samples, miR-140-3p expression was 
significantly down-regulated. The other miRNA that was found to 
be significantly down-regulated in LUSC patients was miR-29c-3p, 

while it was not significantly different for LUAD [Figure 8]. In lung 
adenocarcinoma and lung squamous cell carcinoma samples, 
miR-199a-5p expression was significantly up-regulated. The areas 
under the ROC curves (AUC) for each of the three miRNAs were 
generated. Among the three miRNAs, miRNA-140-3p showed the 
highest AUC (0.81), whereas miR-199a-5p and miR-29c-3p showed 
AUC values of 0.69 and 0.75, respectively [Figure 9].

dI s c u s s I o n
Despite significant improvements in NSCLC therapy, the prognosis 
for patients with NSCLC remains poor. This is mainly because 
of the lack of early and sensitive biomarkers. We demonstrate 
that the blood and tissue miRNAs and mRNAs and their profiles 
can be developed as biomarkers in the diagnosis and prognosis 
of NSCLC. This study examined four miRNA expression datasets 
and observed a substantial overlap of 12 differentially expressed 
miRNAs and 330 target genes were identified for 12 differentially 
expressed miRNAs.

In addition, functional enrichment analysis of the candidate 
miRNAs target genes disclosed some important biological 
processes and molecular functions. Dysregulated SMAD signaling 
has been linked to cancer.[35-37] Network analysis identified that 
SMAD3 appears in most enrichment pathways.

The main terms of molecular functions were related to 
transcription factor binding, transcription regulatory activity, 

Figure 5: Kaplan–Meier survival plots for six genes. The black curve shows the survival of patients with up-regulated genes and the red curve 
shows the survival of those with down-regulated genes

Figure 6: A combined survival curve analysis from the panel of three 
genes (IL6, SNAI1, and CDK6). Black colour indicates low expression 

and red colour shows high expression
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Figure 7: Kaplan–Meier survival curves for miRNAs associated with overall survival. The black line shows down-regulated miRNA in NSCLC 
tissue and the red line shows up-regulated miRNA in NSCLC tissue

protein kinase activity, and chromatin binding. In molecular 
function, 5’-deoxyribose-5-phosphate lyase activity was the 
most highly enriched. The enzyme 5’-deoxyribose-5-phosphate 
lyase is involved in base excision repair, which is a crucial step 
in the repair of DNA single-strand breaks and a major line of 
defence against cancer growth.[38,39] In addition, we observe 
a prominent enrichment for the RISC complex. MicroRNAs 
regulate gene expression by RNA-induced silencing complex 
(RISC) to a target mRNA, leading to translational repression 
and/or mRNA degradation. This indicated the possible role 
of epigenetic control of gene expression in NSCLC. We also 
identified eight genes (MPAL1, IL6, Fibroblast Growth Factor 

2, mothers against decapentaplegic homolog 2, DICER1, cell 
division protein kinase 6, hepatocyte growth factor, and FGF2) 
that we considered to be major hubs. Among these genes, 
MAPK1 and IL6 are already known to be implicated in cancer. 
These eight hub genes are proposed as blood-born mRNA 
biomarkers for NSCLC and should be experimentally validated 
in the future work.

This study identified three miRNAs that could serve as 
biomarkers in the diagnosis of NSCLC: miR-140, miR-29c, and 
miR-199a. In addition, various studies showed that miR-140-3p 
functioned as a tumour suppressor in various malignancies, and 
miR-140-3p expression has been found to be down-regulated in 

Figure 8: Relative expression of miRNAs. (a) LUAD versus control and (b) LUSC versus controls

a b
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a variety of cancers. This is in line with the results of the present 
study where decreasing levels of miR-140-3p were found in 
four separate NSCLC datasets. Recently, Huang et  al. showed 
that the expression of miR-140-5p was decreased in the SCLC 
tissues, significantly associated with overall survival and cancer 
stage.[40] An additional study found that miR-140-3p was down-
regulated in NSCLC tumours; compared with adjacent normal 
lung tissue.[41]

In addition, miR-29c-3p also showed the potential of using 
it as a non-invasive blood-based biomarker for the detection of 
NSCLC. Studies demonstrated that miR-29c-3p suppresses colon 
cancer cell growth and suppresses hepatocellular carcinoma 
tumour progression.[42,43] In laryngeal squamous cell carcinoma, 
low expression of miR-29c-3p is positively correlated with 
decreased survival.[44] Furthermore, decreased expression of miR-
29c-3p suppresses endometrial cancer cells proliferation and 
tumour growth.[45]

Chen et al. identified the miR-199a-5p as a tumour suppressor 
in triple-negative breast cancer.[46] In addition, one study 
showed that miR-199a-5p targets MAP3K11 and suppresses 
NSCLC progression.[47] Zhu et  al. demonstrated that miR-199a-5p 
suppresses colorectal tumour growth.[48] An additional study 
showed that miR-199a-5p targets SNAI1 and inhibits papillary 
thyroid carcinoma progression.[49]

One of the limitations of this study was that it only compared 
NSCLC patients with healthy controls, but not with other types 
of malignancy or lung diseases. This study identified mRNA 
and miRNA as biomarkers for NSCLC, however, not be able to 
differentiate between non-small-cell lung carcinoma and other 
carcinomas. The future research should be designed to include 
more samples to assess the prognostic and diagnostic potential of 
the identified miRNAs and mRNAs.

co n c lu s I o n

In this study, we identified 12 miRNAs that are down-regulated in 
the blood and tissue of NSCLC. Based on bioinformatics methods, 
three miRNAs (miR-140-3p,  -29c, and  -199a) are identified as 
potential biomarkers. Further studies with a larger number of 
samples are needed.
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