
ORIGINAL ARTICLE� e-ISSN: 2349-0659 p-ISSN; 2350-0964 

Development of Fog-based Dynamic Load Balancing
Framework for Healthcare using Fog Computing
Sejal Bhavsar1, Kirit Modi2

Ab s t r ac t
Fog computing has become one of the leading technologies by conquering the many significant challenges in IoT, Big Data, and Cloud.
Computing models are inclining toward Fog than Cloud due to faster processing. The numerous idle devices near the users help overcome
the issue of latency found in the Cloud. Resource management through load balancing plays an essential role in efficient data processing.
Based on the current pandemic situation, Emergency patient’s vital sign monitoring system for COVID and other variants is implemented with
support of dynamic resource load balancing environment. Apart from this, previously, we have faced many such diseases such as plague and
flu which were pandemic and have become normal diseases now. Apart from them, there are many critical conditions and diseases such as
hypertension, kidney failure, heart attack, cancer, lung, and liver disease that need continuous monitoring. It is not feasible to treat all patients
at the hospital as the count is increasing very speedily. There is a need for infrastructure to handle resource issues without any delay in the
treatment of patients using the fog computing. The proposed approach DynaReLoad would provide prompt health services and prevent early
deaths due to critical conditions. An immediate alert to the doctors will be generated when detecting any abnormality. The effectiveness of
DynaReLoad has been analyzed with other load balancing algorithms to achieve a low latency with minimum MakeSpan, better scheduling
time, and response time, maximizing load balancing level and resource utilization using iFogSim.

Keywords: Cloud computing, E-healthcare, Fog computing, IoT, Vital-signs monitoring
Asian Pac. J. Health Sci., (2022); DOI: 10.21276/apjhs.2022.9.4S1.02

©2022 The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In t r o d u c t i o n

Many significant challenges in IoT, Cloud, and Big Data have
been trounced by Fog computing, making it one of the leading
technologies in use. It helps enhance the quality of many services as
it is data sensitive, causes reduced latency in day-to-day activities,
and improves real-time applications with being delay-sensitive.
Fog computing also ensures that no resource is overloaded and
under loaded by proper distribution of workload dynamically
with shared pool of computing resources. Load balancing directs
to reduce response time, improve latency, reduce scheduling
time, communication cost, and balance distribution of resources.
Malfunctions in the environment, fluctuation in resources, and
performance deviations are managed through resource allocation
and scheduling techniques by means of load balancing.

IoT plays a prominent role in managing everyday jobs as it
connects actuators, sensors, and smart devices (which include
energy controllers, vehicles, mobile phones, traffic controllers,
and computers) to the internet. It links everything and makes
them smarter. Cisco made a prediction that nearly 51 billion
devices with each other worldwide will be associated by 2021. It
is estimated that nearly 2.3 zetta bytes will be generated by these
devices every year. The conventional databases are incapable of
processing this vast amount of structured and unstructured data.
This increases the need for a technology that can analyze the
collected data to extricate functional insights to make essential
decisions. Cloud computing is one of the most effective choices
to support processing, storage, communication, computation,
and distribution, as smart devices only allow limited storage.
According to Rangras (2011), Cloud[1] provides IaaS, PaaS, and
XaaS common services. The speed at which processing takes
place in the cloud is less than that required by IoT applications.[2]
The inherent hindrances of cloud, that is, unmanageable traffic
congestion, bandwidth constraints, variable latency, and lack of

1Department of  Computer Science and Information Technology,
Ganpat University, Gandhinagar Institute of Technology, Moti Bhoyan,
Gujarat, India.
2Department of  Computer Engineering and Information Technology,
Sankalchand Patel University, Mehsana District, Gujarat, India.

Corresponding Author:  Sejal Bhavsar, Research Scholar, Department
of  Computer Science and Information Technology, Ganpat University,
Gandhinagar Institute of Technology, Moti Bhoyan, Gujarat, India.
E-mail: seju812@gmail.com
How to cite this article: Bhavsar S, Modi K. Development of Fog-
based Dynamic Load Balancing Framework for Healthcare using Fog
Computing. Asian Pac. J. Health Sci., 2022;9(4S1):3-11.
Source of support: Nil
Conflicts of interest: None.
Received: 13/4/2022	 Revised: 15/5/2022� Accepted: 11/6/2022

mobility, and pose challenges when dealing with IoT’s demands.
The primary reason for these issues is the large distance between
the data centers of cloud service providers like that of Facebook,
Amazon Web Services (AWS), and Google.

Fog computing has surfaced as an alternative and it follows a
decentralized computing concept, unlike Cloud computing which
exclusively relies on any central component.[3,4] The numerous
idle devices near the users are helpful to overcome the issue of
latency found in the cloud, but the more complex processing is
accomplished by the cloud instead of fog. Primary devices such as
routers, base stations, and smartphones can pose as Fog devices
as they are equipped with storage space and processing capacity,
sometimes with multiple cores.

Some research challenges such as heterogeneous
organization and global connectivity are being conquered by
Fog computing. The prime challenge posed by Fog computing is

www.apjhs.com� Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 2022 4

resource management. It has become essential to inspect these
service requirements and resource management. Many reviews
on Fog computing have been conducted by various reviewers.
The researchers[5] described the concepts of Fog computing,
description, framework, various applications, architecture,
applications, and challenges of it. Hierarchical architecture
that contains various layers related to resource management,
computing, security, storage, and communication. The researcher[6]
represented different views of platform level Fog computing and
several proportions of applications, architecture, and challenges.
Serious problems lead due to any kind of loss or delay throughout
processing and retrieving of precise sensor data. The significant
issue is how to balance resource management at platform level
in Fog computing? An efficient scheme needs to be designed to
process and balance the data.

The key objectives are summarized as follows:
•	 For better scheduling of resources, need to propose dynamic

load balancing method that is useful in managing platform
level issues, that is, scheduling and management of resource
in Fog computing.

•	 As per the current pandemic situation, need to propose
dynamic load balancing approach for the application scenario
(Emergency patient’s vital sign monitoring system for COVID-
19 patients and critical care patients.

•	 Need to simulate scenarios for three different configurations:
Cloud-based implementation, Fog-based implementation,
and dynamic load balancing using fog computing, each
containing a numerous sensors for each Fog device to
calculate the various quality of service parameters.

•	 Need to compare proposed approach with the other load
balancing algorithms to achieve better quality of service
parameters.
The paper is arranged in the following way. Section 2 covers

necessary Fog computing background information, its current
research trends, comparison between Fog and other computing
technologies, including cloud computing. Section 3 presents
recent research work related to the existing Fog computing
paradigm, framework, and approaches for issues related platform
level design. Section 4 presents the proposed framework and
algorithm DynaReLoad for platform level design concerns in Fog
computing. The proposed algorithm and framework DynaReLoad
for the application scenario are explained in Section 5. Section 6
covers the experimental simulation setups. Comparative result
analysis is shown in Section 7. To encapsulate this research, Section
8 presents a conclusion.

Bac kg r o u n d
Fog computing paradigm is a platform where multiple
heterogeneous devices can implement processing and storage
tasks while communicating with each other. They do not function
under any central device and stand independent to each other.
It allows the services delivered by the Cloud to be at edge of the
network (closer to users). It also enables users to be mobile and
spread across great geographical regions. This improves latency as
well as the quality-of-service parameters.

Fog is designed to support applications that require low
latency[7] as it employs numerous nodes distributed across large
areas. A device that supports networking, computation, and can
perform storage functionalities can be used as a Fog device which
includes routers, proxy servers, and any other device capable of

computation. It is one of the basic elements in the Fog environment,
along with Fog servers and gateways. This developing computing
paradigm has encountered some new challenges in the past few
years.

Multiple architectures for Fog computing exist, many of which
are in the form of clusters of heterogeneous devices. In contrast,
data centers are the primary physical component of the Cloud
and this increases the energy, resource consumption, and the
operational costs of cloud computing. Conversely, Fog consumes
comparatively low energy and also reduces operational costs.
The distance between a user and a Fog device might be equal
to just a few hops as the devices are closely placed to the users,
as mentioned.[8] The major variance among the two is that Fog is
based on a geographically distributed approach, when the cloud
follows a centralized approach.[9] One of the major issues of the
cloud is high latency which does not allow real-time interaction.
This issue can be settled by Fog computing. However, as
compared to cloud, there are high chances of failure in as it follows
decentralized management, wireless connectivity, and is prone to
power failure.[10,11] Overall, it should not be supposed that Fog is a
better alternative to cloud as both works differently by satisfying
different requirements and perspectives.

There has been an increased interest in data processing near
the users in the preceding few years. Hype cycle[12] concludes
that Fog computing can improve the smart home technology if
both are integrated properly. To showcase the latest emerging
technologies, A Hype Cycle is created. As presented by the Hype
Cycle, a few significant technologies comprise of autonomous
vehicles and edge computing.

In addition, numerous articles and papers related to Fog
have been studied and analyzed. Figure 1 showcases analogous
technologies to Fog designed over the recent years.

However, in the past 1 year, the search tendencies have
reduced by beyond 3 times for edge computing. After the influx
in research for edge computing, the two top searched computing
technologies are Mobile Edge and Mobile Cloud computing. Fog
Dew and Dew computing experienced the lowest trends. Searches
regarding Fog computing have been escalating with passing years,
making it one of the rapidly growing research topic.

The platform performs the role of management and
maintenance. It oversees scheduling and allocation of resources

Figure 1: In Google scholar, search occurrence of computing
technologies similar to Fog computing

Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare� www.apjhs.com

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 20225

along with other issues in Fog computing. Since Fog works with
heterogeneous devices, the development of proper resource
allocation and scheduling is a major challenge. Availability and
efficiency are the two vital constraints for resource management
using load balancing. Resources need to at hand as they are not
dedicated to specific processing tasks. If an effective system for
allocation and scheduling is not implemented then, processing
can face undesirable delays. Next section shows related work of
Fog computing.

Re l at e d Wo r k

The following section explains the work related to IoT, Cloud,
and Fog computing. It also describes the work concerned with
scheduling and allocation of Fog computing resources.

The phrase “Internet of Things” was used for the initial phase
by Kevin Ashton in the year 1999 on supply chain management
presentation. The researchers[2] introduced that storage capacity
and processing power are fairly limited, giving rise to problems
such as privacy, security, performance, and reliability. Cloud is
capable of processing the data accumulated by IoT devices using
its storage and processing resources in batch format. Joseph Carl
Robnett created Cloud computing in the 1960s for the purpose of
accessing data from anyplace and at any given moment.

Fog computing is either the same as Edge computing.
Services are processed to the Edge instead of cloud to ensure
better reliability, shorter response time, and save bandwidth. The
author examined the usage of Fog computing as a substitute
for IoT.[13] The concerns and challenges for the integrations of IoT
and Fog need to be systematically reviewed and synthesized.
According to author,[9] Cloud resources and Edge of the network
can be integrated easily with the use of Fog computing.

The papers mentioned above conclude that Fog computing
might be capable of overcoming the shortcomings of cloud as it
is based on real-time interactions which drastically reduces bulk
processing. However, Fog computing is equipped with challenges
itself including resource allocation and scheduling.

Alsaar et al.[14] designed an algorithm for resource allocation which
uses linear decision tree rules for balancing workload. Researcher[15]
thought of integrating old records of cloud customers through a Fog
environment which would help in estimation of resources required.
The author[16] created a Module Mapping Algorithm. The primary
function of the algorithm is efficient distribution of IoT devices in
in Fog-Cloud infrastructure. An algorithm found optimal methods
to reduce the consumption of energy and distribute resources
effectively.[17,18] The research portrays that Fog computing can
improve the healthcare sector to a great degree by allowing faster
data collection and proper resource allocation, saving multiple lives
which are lost because of delay in treatment. The author proposed
a method which allowed scheduling of health-care tasks based on
priority through load balancing and efficient resource scheduling.[19]
An Alert and Emergency Management system proposed[20] to send
immediate notifications in case of emergency by multiple calculations
based on load balancing. A health-care system based on CDS utilized
classification based on decision tree.[21] Its major limitation was
that high latency since processing was carried out in Cloud layer.
A remote health monitoring system is designed for collecting data
through wearable sensors.[22] Next section focuses on the proposed
architecture and approach.

Pr o b l e m Fo r m u l at i o n Me t h o d a n d
Pr o p o s e d Alg o r i t h m

The main objective of the proposed approach is to achieve better
quality of service parameters using following problem formulation
model. The main aim is to minimize overall, scheduling time, better
load balancing level, good resource utilization, good response
time, better latency, and better MakeSpan using proposed
approach.

To manage fog requests, suppose Fog layer has N amount of
fog nodes

Fog nodes= { ʄg1, ʄg2,…., ʄgN }
There are various physical machine located in the scenario.

Consider all the physical Machine with the Ϸϻs = {Ϸϻ1, Ϸϻ2,
Ϸϻ3,..., ϷϻN}. There are total N number of physical machines.
Multiple virtual machines are associated with the Ϸϻ. Here, we are
considering the Fog nodes as a virtual Machine.

ὑϻ = {ὑϻ1, ὑϻ2, ὑϻ3,..., ὑϻN}
Every ὑϻ has approximately resources such as RAM, Network

Bandwidth, CPU, nodes information, and storage. To manage
consumer requests, the Fog layer contains multiple Fog nodes.

A Fog node has maximum requests from patients. Equation
(1) describes the maximum number of requests.

			
()R' R'

=
=∑To

1
tal

n

p
p � (1)

Load balancer balances ὑϻ load equally among all the ὑϻs by
distributing requests. The 𝑥 tasks are executed by the ὑϻ in parallel
manner. Each ὑϻ processes the tasks independently and runs its
own resources.
a)	 MakeSpan: Completion time (ƇƮ) is the total execution time in

which task get completely executed or scheduled. Completion
time is defined time at which process completes its execution.
Low MakeSpan should be required. Equation (2) defines the
turnaround time (ƮãƮ). Turnaround time is the time difference
between arrival time and completion time. As per the Equation
(3), waiting time (WƮ) is the time difference between burst time
and turnaround time.

				 ƮãƮ = ƇƮ−ɮʈ� (2)
				 WƮ = ƮãƮ−ɮʈ� (3)

Where, AT is the time at which a process arrives at the ready
queue to initiate the execution. It defines time measurement in
milliseconds. The burst time is denoted with ɮʈ. ɮʈ means time
to process for its execution. It measures time in milliseconds.
The arrival time is denoted with AT. MakeSpan is the maximum
completion time required for a task. The objective is to alleviate
the response time and MakeSpan of load balancing requests.
Equation (4) explains the MakeSpan of r tasks on ὑϻi.

			 MakeSpanr =Max (ƇƮ r,i)� (4)
Where s Є ὑϻ, ὑϻ = {1,2,3,….,s,….y}, r Є Ʈ task, Ʈtask = { 1,2,3,...,

r,..., x) and mapping of Ʈtask to ὑϻ affects performance parameters.
Now, the total tasks assigned to each ὑϻ are dependent on the
load balancing algorithm and end user requests.

The processing time and response time of the tasks are
expressed using linear programming.
b)	 Response time: It, simply put, is the time taken by a Fog

resource to complete a given task. For this time, the given
node will be occupied and will not perform any other task.
Equation (5) defines response time.

www.apjhs.com� Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 2022 6

		 '

υ

υ
τ

∈ µ

× µ
= ∑

x ,y

 ' s (CTx)

 s
R

y

MakeSpan Number of � (5)
Where, RƮx,y is used to represent the total RƮ of the ὑϻs in the

system and ƇƮx defines the task completion time.
c)	 Latency: It is defined as the whole time taken by the system

to respond to the receiver’s data. It is a combination of the
processing time and propagation time.

Latency (ρ) is computed as below Equation (6),
	 	 	 	 ρ = ρt + ɋ	� (6)

Here, ρt denotes the propagation time taken by the data to
reach the Fog layer, Cloud layer, and Fog using load balancing and
ɋ indicates execution time, that is, processing time.
d)	 Scheduling time: Scheduling time effectively manage their

computing resources and schedule the incoming request.
Scheduling is the process of assembling incoming requests
in a certain manner so that the available resources will be
properly utilized. Equation (7) presents that scheduler needs
to consider a number of constraints, including the nature
of the task, the size of the task, the task execution time, the
availability of resources, the task queue, and the load on the
resources at the time of scheduling. The cost of each task,
when it is to be assigned on any Fog server, is denoted by,
that is, and the task execution time Ti

e.
			 Sτ = T + Ti

e + R� (7)
e)	 Resource utilization: It is the complete utilization of each

resource. Resource utilization ratio should be required high for
the better performance. Equation (8) defines resource utilization.

Resourcen utilization= ßș+ Ȯȴ,×100%
 ƒșs� (8)

f)	 Load balancing level: High load balancing level should be
required for better performance. Equation (9) defines load
balancing level.

Load Balancing level= ßș×100%
 ƒșs�

(9)

Where, the balanced number of FNs is denoted with ßș, the
number of overloaded FNs is denoted with Ȯȴ, and the number of
all available ƒșs is denoted with FNs.

Proposed Algorithm: DynaReLoad
1.	 DynamicResourceAllocation: closestDC ⃪null
2.	 currEstimatedResponseTime ⃪ null
3.	 currEstimatedResponseDC ⃪ null
4.	 closestDC ⃪ findClosestDC(dcArray)
5.	 for each dc Є dcArray do
6.	 calculateEstimatedResponseTime ⃪ currEstimated

ResponseTime(dc) < currestimated Response time ?
calculateEstimatedResponseTime(dc): null

7.	 currEstimatedResponseDC ⃪ dc
8.	 end if
9.	 end for
10.	 if closestDC == currEstimatedResponseDC
11.	 selectedDC ⃪ closestDC
12.	 else
13.	 selectedDC ⃪currEstimatedResponseDC
14.	 end if
15.	 if selectedDC.vm[0].status == available
16.	 allocate(selectedDC.vm[0])

17.	 else
18.	 for each vm Є selectedDC.vms do
19.	 if vm.status == available
20.	 allocate(selectedDC.vm)
21.	 else
22.	 22.vm.allocations < MAX (selectedDC.vms.allocations)
23.	 allocate(selectedDC.vm)
24.	 end if
25. 	end for
26.	 end if

The main goal of the DynaReLoad is find the closest data
center from all the available data centers and find the good quality
of service parameters, that is, fastest response time, scheduling
time, better resource utilization, better load balancing level, and
low latency. A data center is randomly chosen from proximity list
when there is more than one closest data center. Initially, it first
search or detect the closest data center when response time of
closest data center is degrading. It will tagged the better response
time data center as a quickset data center. After the quickest
data center selection, the closest data center is selected as the
destination data center. If the quickest data center and closest data
center are not similar then it will randomly select the data center.

Initially current estimation response time and current
estimation response time data center are assigned with the null
values. First goal is to find the closest data center from all the
available data centers. Now, calculate the fastest response time
using a ternary operator. Next, it will check the current estimation
response time and whether the closest DC is the same or not.
After that, it is assigned to selected DC and find the data center.
Let suppose it find data center 1 as closest. Then, the next task is
to select Vm. Next section shows the proposed architecture and
application scenario based on the current requirement.

Figure 2: DynaReLoad architecture for emergency patient’s vital sign
monitoring system for COVID-19 pandemic situation outbursts

Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare� www.apjhs.com

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 20227

Pr o p o s e d Ar c h i t e c t u r e a n d App r oac h
The proposed Fog computing architecture and approach have
been illustrated in Figure 2. The model, along with its platform
level issues like resource scheduling and management using load
balancing in Fog computing would be suitable for the proposed
environment as it would help overcome the issues of latency and
ensure that the processing is as efficient and quick as possible.

The Fog architecture is represented best through layered
representation. Many analysers have analyzed different Fog
architectures for process implementation, that is, three,[19] four,[22]
and five.[23]

Components of Fog Computing Architecture
For the proposed framework DynaReLoad, a three-layer Fog
architecture has been implemented.
a.	 End- user layer: The bottom layer consists of all devices which

could function as the basic data source for Fog computing.
These include smart devices, ECG sensors, O2 sensors, pulse
monitoring sensors, and blood pressure monitoring sensors
and would collect all physical data necessary. Virtual sensors
are also a part of the physical layer as they can be used to
estimate the conditions of a process using the readings of
the physical sensors and making immediate decisions where
necessary. In the proposed system, the sensors will collect
data from the patients about their vital signs.

b.	 Fog layer: The Fog layer consists of Fog servers, Fog devices,
gateways, and a dynamic load balancer. A group of virtual and
physical sensors would be associated with the Fog devices
and Fog server. All Fog devices associated to the same server
will have the ability to communicate with each other when
required. This layer also handles the various applications
computation requirements. The dynamic load balancer would
ensure that any computing load is distributed equally among
all the nodes and none of them is overburdened.

c.	 Cloud layer: At the cloud layer, the data that need to be
stored for a long time are sent by the Fog nodes to the cloud
for processing and storage. It is only after processing in the
Fog layer that the data flow component decides if it should
be stored locally or for long-term storage in cloud. The main
challenge is to minimize data volume by processing at the
edge. Not all data are useful, and therefore, data trimming saves
a vast amount of storage space. Next section layouts proposed
algorithm and framework according to application scenario.

Proposed Algorithm and Framework (DynaReLoad)
According to Application Scenario
Health-care systems surface massive dares as a significance of a
cumulative number of patients and chronic diseases. The values
of biometric parameters are measured manually in utmost
hospitals. Much of the time is wasted in the manual process. We
can reduce the cost and time with the help of automation process.
The efficiency and quality achieved with the integration of Fog
computing with dynamic load balancing in health-care systems.
For example, consider Cloud computing used in the scenario of
healthcare. If the storage and computation requests of all the
patients are managed on the centralized single Cloud server, then
it will outcome into multiple problems, that is, traffic congestion
problem, enormous end to end delay, and huge network usage.

Fog nodes are being used in the geographically distributed
manner to resolve these issues. Congestion problem occurs if we
perform numerous tasks on a single Fog node. In the multispecialty
hospital, we have checked scenario like one machine or one server
is not able to handle all the patients admit details and discharge
details. One node is not capable to handle to all the requests.

The proposed algorithm and framework (DynaReLoad) are
used to create a system for the monitoring of an emergency
patient’s vital signs caused due to the COVID-19 pandemic and
critical diseases. With the quick increase in the number of affected
patients, it is near impossible for hospitals to accommodate all
patients. Consequently, many of the patients are not treated
in time, leading to a higher mortality rate. To avoid any delay in
treatment, the proposed framework will generate an immediate
alert to the hospital and doctors in case of any abnormalities.

For a multi-storied multi-specialty hospital, there are
enormous challenges in terms of data gathering and processing.
For example, there are 1000 patients with 4-5 sensors attached to
each of them, so for one patient the number of requests in a 1-min
can be calculated as:

1 min = 60 s,
Each second, there will be data from each sensor, so total data

gathered in a minute = 60 × 1000 × 4 = 240000 requests.
To handle this effectively, we can attach one Fog node to each

unit of 200 patients. Hence, by limiting the number of requests
hitting on a cloud, requests get distributed to Fog nodes. In that
case, to avoid flooding of requests to one node, and for faster,
fault-tolerant responses, the mechanism of load balancing can be
taken into consideration.

To ensure that an immediate response can be generated,
many quality-of-service parameters need to be maintained, which
include higher latency, better execution time, faster response time,
rapid request service time by the data center, and cost-efficiency.

Figure 3 shows that a patient suffering from COVID-19 or due
to any critical disease issue is quarantined in critical room, which is
equipped with sensors for monitoring the vital signs of a patient.
Most of the affected people exhibit minor external symptoms such
as sneezing, cough, shortness of breath, throat pain, tiredness,
headache and fever, and severe internal symptoms (i.e., reduction
in oxygen level, extreme variations in blood pressure and pulse,
and ECG-related issues). The sensors will be responsible for
monitoring these internal vitals through oximeter, blood pressure
and pulse monitor, and ECG.

Figure 3: Proposed system Framework for multispecialty hospital

www.apjhs.com� Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 2022 8

It is important to monitor these signs as these factors may
affect the risk to any patient. Many patients might feel healthy and
display no external symptoms, but they may have poor oxygen
levels, which could cause severe lung issues. If the oxygen level of
any patient drops below the normal oxygen levels (95% according
to the WHO guidelines), then the doctors will be notified of the
same. Similarly, an adult is expected to have a pulse rate of 60–100
beats/min and 70–100 beats/min for children and adolescents.
(The maximum heart rate can be calculated using the formula,
beats/min = 220 – one’s age).

If the pulse rate is recorded to be less than that expected,
an alert will be sent to the concerned personnel. The ECG sensor
would work in a similar fashion and detect any abnormality found
in the troponin level, which is the main determining factor for
cardiovascular abnormalities.

The sensors will detect the current status of the patient and
will send a status report to the doctor outside the ICU. This would
reduce the frequent physical diagnosis required, allowing the
doctors to check on the patient in a safe environment. The health
history of any patient will also be registered in the system before
being quarantined to the ICU, which would prove helpful when
analyzing the health status.

The collected sensors data will then be transmitted to
dynamic load balancer, which will then process the data on
different Fog nodes and send updates for remote monitoring.
According to the framework, the hospital is divided into small cells,
each consisting of multiple Fog nodes. A dynamic load balancer
would be responsible for randomly selecting the Fog nodes. It
is able to overcome the problems posed by the separate cluster
scenario. In such a scenario, the hospital would be divided into
separate clusters, with each cluster head handling the requests
sequentially. This Could cause a number of issues, that is, wastage
of time, resource unavailability, reduced transmission time, and
service migration. If the load balancer is placed on top of all
sensors, these issues can be overcome.

In the given scenario, Fog nodes are assigned to the hospital
with multiple Fog nodes on every floor. Initially, the accumulated
data by the vital sign sensors are transmitted to the attached
custom load balancer. The balancer is attached to every dedicated
floor-wise Fog node. The nodes are connected to the Cloud, where
further processing will be conducted for the Fog computing system.
If any abnormality is detected, an immediate alert will be sent to
the doctors. This would allow the patients to receive timely health
services,[24] preventing early deaths due to the virus. Next section
exhibits the simulation setup and results using iFogsim simulator.

Si m u l at i o n Se t u p
In proposed application simulations, different scenarios are analyzed
and evaluated, where the proposed algorithm and framework are
implemented in three different configurations: Cloud-based, Fog-
based, and dynamic load balancing Fog-based configuration.
Four sensors are used to detect blood pressure, ECG, oxygen level,
and pulse. The captured signals and data are transmitted to the
Fog nodes. Fog nodes then further process the received data to
detect the status. iFogSim has been used to simulate and evaluate
our application scenarios in terms of response time, latency, and
resource utilization. Table 1 represents the experimental setting
parameters along with Fog node configuration.

Figure 4 represents the topology created by iFogsim to
evaluate dynamic load balancing using Fog-based architecture

Table 1: Experimental setting parameters
Total no. of users 60/min
No. of sensors/each user 4 for normal COVID patients. It

can be vary according to the
requirement.

Storage cost 0.1
No. of fog nodes 200 patients/fog node
Configuration of fog node 1 GB Storage
Resource Costs 1.0
Bandwidth 1000 MBs
Memory Cost 0.05

Figure 4: Topology of emergency patient’s vital sign monitor

as per the defined in Algorithm 1 and the proposed framework.
The metrics under observation are latency, network utilization,
response time, etc. Fog nodes are created, each equipped with
sensors to measure the vital signs of a patient. Data generated by
the sensors are processed at virtual machines placed at the Fog
nodes. A dynamic load balancing algorithm is used to process data
in a fast way.

For evaluating Fog-based dynamic load balancing
implementation in iFogSim, the parameters include the central
processing unit computing capacity in MIPS, bandwidth of uplink,
architecture level, RAM, processing in terms of rate per million
instructions, busy power, downlink bandwidth, and idle power.

To run the final simulations, import the topology in iFogsim
simulator, which is already created. The authors will compare cloud-
based execution, Fog with the closest data center, and Fog with
dynamic load balancing. The topology comprises the Fog nodes
connected through a network and are attached to a load balancer.
This load balancer distributes the traffic onto the underlying
Fog nodes. Here, initially, only two buttons were available in
the foganalyst header, that is, canvas and execution. To better
understand the comparison experimental part, the authors have
created two more drop down buttons in the foganalyst. Hence,
the authors are able to compare results using Cloud computing
and Fog computing with closest data center and dynamic load
balancing using Fog computing.

Co m pa r at i v e Re s u lt An a lys i s Us i n g
Qua l i t y o f Se r v i c e Mo d e l

Latency
As number of sensors increases, the Cloud-based architecture
increases latency significantly. The Fog nodes only process

Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare� www.apjhs.com

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 20229

the sensed data of the sensors attached to them in Fog-based
configuration. Defiantly, latency is increases in the cloud because
cloud server requires to process all the sensor requests. Dynamic
load balancing based Fog scenario provides less latency as
compare to other two approach as per Figure 5.

Here, latency in Cloud-based approach increases
tremendously with increasing number of sensors because cloud
server will have to process all the sensors requests. In contrast, Fog
with dynamic load balancing based approach, the Fog nodes only
process the data sensed by the sensors attached to them, resulting
in reduced latency.

Dynamic load balancing-based Fog scenario provides the least
latency when compared with the other two approaches. Similarly,
Figure 6 shows the comparison of load balancing algorithms. As
per the results, DynaReload approach provides reduced latency as

compared to the other load balancing algorithms, that is, round
robin, active monitoring, and throttled.

Response Time
Response time, simply put, is the time taken by a Fog resource
to complete a given task. For this time, the given node will be
occupied and will not perform any other task. Figure 7 presents
the response time of a Fog node for processing the data sensed
by different vital signs monitoring sensors in a Cloud-based, Fog-
based, and dynamic load balancing-based architecture.

Figure 8 represents the response time of a Fog node for
processing the data sensed by different vital signs monitoring
sensors in a round robin, active monitoring, throttled, and
dynamic load balancing-based architecture. Here, DynaReload
approach provides better response time as compared to other
load balancing algorithms.

Scheduling Time
Figure 9 represents the average, minimum, and maximum scheduling
time taken by the three approaches (i.e., Cloud-based, Fog-based,
and dynamic load balancing Fog-based.) dynamic load balancing
approach covers less scheduling time as compare to Cloud-based
configuration and Fog with closest data center configuration.

Figure 10 shows the overall scheduling time of different load
balancing algorithms. Here, the DynaReload algorithm processes
data in less scheduling time as compared to round robin, throttled,
and active monitoring algorithms.

Figure 6: Comparison of load balancing algorithms

Figure 5: Comparison of latency for different configuration

Figure 8: Comparison of load balancing algorithms

Figure 7: Response time by region Figure 9: Overall scheduling time

www.apjhs.com� Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 2022 10

Here, DynaReload approach provides lower MakeSpan
as compared to other load balancing algorithms. DynaReload
also provides better response time as compared to other load
balancing algorithms as per Figure 11.

Above Figures 12 and 13 explained that DynaReload algorithm
gives better result as compared to round robin, active monitoring,
and throttled algorithms. Here, DynaReload algorithm provides
higher load balancing level and higher resource utilization.

All the given figures present a comparison of latency,
scheduling time, and response time MakeSpan, resource utilization
and load balancing level for all four approached used. The findings
enable us to understand that most improvement can be achieved
if a Fog-based dynamic load balancing approach DynaReload is

employed for the given scenario, which would allow fast service
care provided to the patients. The simulation results implemented
on altered scales confirm the efficacy of the proposed architecture
for the implementation of emergency patient’s vitals sign
monitoring system. Next section concludes the research and
defines scopes of future work.

Co n c lu s i o n
With the increasing health conditions and pandemics in society,
a need for remote health monitoring system has arisen to ensure
medical services for every patient. A few remote health-care
applications are available in the market based on Cloud computing,
but they pose a major challenge of high latency, less privacy, more
energy consumption, and less data security. Fog computing is
now being used as an alternative as it serves as a middle-ware by
bringing application services and computing resources closer to
the edge where the data are being generated, overcoming the
challenges presented by Cloud computing. The aim of the research
is the resource utilization in efficient way with the least delay
by assigning Fog servers between the end-users and cloud. All
servers carry an equally distributed load which would prevent the
breakdown of overburdened servers. This is achieved by shifting
the load (using load balancing) from the overburdened server to
an idle one nearby by even distribution of load at the fog layer.

The DynaReload allows dynamic load balancing for each
type of computing node in the Fog and Cloud. DynaReload
approach provides better results in terms of overall scheduling
time, response time, and latency as compared to Cloud-based
approach and Fog-based normal approach. Again, it gives good
quality results in terms of latency, scheduling time, response
time, MakeSpan, and load balancing level as compared to other
load balancing algorithms. Furthermore, the proposed system
is designed for multispecialty hospital. In the future, the authors
are excited to design a system that would manage to prescribe
medicines after monitoring the sensors values to enhance the
overall health of a patient.

No m e n c l at u r e
Ŕ = Response Time
dc = Data Center
cdc = Closest Data Center
ert = Estimated Response Time

Figure 10: Comparison of load balancing algorithm in view of overall
scheduling time

Figure 12: Comparison of DynaReload with other load balancing
algorithm using resource utilization

Figure 11: Comparison of DynaReload with other load balancing
algorithm using MakeSpan

Figure 13: Comparison of DynaReload with other load balancing
algorithm using load balancing level

Sejal Bhavsar and Kirit Modi: Fog-based Dynamic Load Balancing Framework for Healthcare� www.apjhs.com

Asian Pacific Journal of Health Sciences | Vol. 9 | Issue 4(S1) | 202211

ὑϻ = Virtual Machine
ρ = Latency
ρt = Propagation time
ɋ = Execution time
T(i

e
) = task execution time

Sτ = Scheduling Time
ß = Bandwidth
ƇƮ = Completion time
ƮãƮ = Turnaround time
ɮʈ = Burst time
Fș = no of Balanced FNs
Ȯȴ = no of Overloaded FNs
FNs = no of all available ƒș𝑠.

 Re f e r e n c e s
1.	 Rangras J, Bhavsar S. Design of framework for disaster recovery in

cloud computing. In: Data Science and Intelligent Applications.
Singapore: Springer; 2021. p. 439-49.

2.	 Shah Y, Thakkar E, Bhavsar S. Fault tolerance in cloud and fog
computing-a holistic view. In: Data Science and Intelligent
Applications. Singapore: Springer; 2021. p. 415-22.

3.	 Mahmud R, Buyya R. Fog Computing: A Taxonomy, Survey and Future
Directions. United States: Internet of Everything, Springer; 2017.

4.	 Gao L, Luan TH, Yu S, Zhou W, Liu B. Fogroute: Dtn-based data
dissemination model in fog computing. IEEE Internet Things J
2017;4:225-35.

5.	 Hu P, Dhelim S, Ning H, Qiu T. Survey on fog computing: Architecture,
key technologies, applications and open issues. J Network Comput
Appl 2017;98:27-42.

6.	 Perera C, Qin Y, Estrella JC, Reiff-Marganiec S, Vasilakos AV. Fog
computing for sustainable smart cities: A survey. ACM Comput Surv
2017;50:32.

7.	 Li J, Zhang T, Jin J, Yang Y, Yuan D, Gao L. Latency estimation for
fog-based internet of things. In: Telecommunication Networks and
Applications Conference (ITNAC), 2017 27th International. United
States: IEEE; 2017. p. 1-6.

8.	 Bhavsar S, Pandit B, Modi K. Social internet of things. In: Integrating
the Internet of Things in to Software Engineering Practices. United
States: IGI Global; 2019. p. 199-218.

9.	 Mahmud R, Koch FL, Buyya R. Cloud-fog interoperability in iot-
enabled healthcare solutions. In: Proceedings of the 19th International
Conference on Distributed. New York, United States: Association for
Computing Machinery; 2018.

10.	 Kai K, Cong W, Tao L. Fog computing for vehicular Ad-hoc networks:
Paradigms, scenarios, and issues. J China Univ Posts Telecommun

2016;23:56-96.
11.	 Peng M, Yan S, Zhang K, Wang C. Fog-computing-based radio access

networks: Issues and challenges. IEEE Netw 2016;30:46-53.
12.	 Top Trends in the Gartner Hype Cycle for Emerging Technologies; 2017.

Available from: http://www.gartner.com/smarterwithgartner/top-
trends-in-thegartner-hype-cycle-for-emergingtechnologies-2017
[Last accessed on 2022 Mar 12].

13.	 Dasgupta A, Gill AQ. Fog Computing Challenges: A Systematic Review.
South Africa: Australasian Conference on Information Systems; 2017.

14.	 Alsaffar AA, Pham HP, Hong CS, Huh EN, Aazam M. An architecture
of iot service delegation and resource allocation based on
collaboration between fog and cloud computing. Mobile Inform Syst
2016;2016:6123234.

15.	 Aazam M, St-Hilaire M, Lung CH, Lambadaris I, Huh EN. Iot resource
estimation challenges and modeling in fog. In: Fog Computing in the
Internet of Things. United States: Springer; 2018. p. 17-31.

16.	 Taneja M, Davy A. Resource aware placement of iot application
modules in fog-cloud computing paradigm. In: Proceeding of the IFIP/
IEEE Symposium on Integrated Network and Service Management
(IM). United States: IEEE; 2017. p. 1222-8.

17.	 Pooranian Z, Shojafar M, Naranjo PG, Chiaraviglio L, Conti M. A novel
distributed fogbased networked architecture to preserve energy
in fog data centers. In: Proceedings of the 2017 14th International
Conference on Mobile Ad Hoc and Sensor Systems, Orlando, FL,
USA: IEEE; 2017. p. 22-5.

18.	 Al-Khafajiy M, Baker T, Chalmers C, Asim M, Kolivand H, Fahim M,
et al. Remote health monitoring of elderly through wearable sensors.
Multimedia Tools Appl 2019;78:24681-706.

19.	 Aladwani T. Scheduling IoT healthcare tasks in fog computing based
on their importance. Proc Comput Sci 2019;163:560-9.

20.	 Velásquez W, Munoz-Arcentales A, Salvachúa J. Fast-data architecture
proposal to alert people in emergency. In: 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC).
United States: IEEE; 2018. p. 165-168.

21.	 Naghshvarianjahromi M, Kumar S, Deen M. Brain-inspired intelligence
for real-time health situation understanding in smart E-health home
applications. IEEE Access 2019;7:180106-26.

22.	 Mit HR, Diyanat A, Pourkhalili A. Mist: Fog-based data analytics
scheme with cost-efficient resource provisioning for iot crowdsensing
applications. J Network Comput Appl 2017;82:152-65.

23.	 Varshney P, Simmhan Y. Demystifying fog computing: Characterizing
architectures, applications and abstractions, in Fog and Edge
Computing (ICFEC). United States: 2017 IEEE 1st International
Conference on IEEE; 2017. p. 115-24.

24.	 Bhavsar S, Modi K. Design and Development of Framework for
Platform Level Issues in Fog Computing. In Research Anthology on
Architectures, Frameworks, and Integration Strategies for Distributed
and Cloud Computing. Belgium: IGI Global; 2021. p. 429-51.

