Pharmacognostic, Phytochemical Investigations, and *In Vitro* Anti-arthritic Activity of *Adiantum venustum* D. Don

Vaishali Somani*, Ashish Jain, Akhlesh Kumar Singhai

Abstract

The present investigation deals with pharmacognostical, physicochemical, phytochemical analysis, and *in vitro* anti-arthritic activity of ethanolic extracts of *Adiantum venustum* D. Don. The macroscopic and microscopic characters, physical constant values, extractive values, ash values, color analysis, and fluorescence analysis were performed. The stems were 13-14 cm in size while leaves were 3-5 mm. Stems were straight with nodes while leaves were triangular and fan shaped. Transverse section of aerial parts of *A. venustum* showed epidermis consists of closely packed cells with single layer. No intercellular space was found. Endodermis is indistinct. On microscopic examination, the powder showed wavy epidermis, parenchyma cells, Phloem, fiber, trichome, brownish matter, and crystals. Physical constants performed were loss on drying, ash content, acid insoluble ash, and water soluble ash. Extractive values in chloroform and alcohol were determined. Fluorescence studies of the powder were carried in UV, UVB, and day light with various solvents. Phytochemical screening of successive extracts showed positive reactions for steroids, flavonoids, carbohydrates, phenols, and tannins. *In vitro* anti-arthritic activity was performed by the inhibition of protein denaturation method. The ethanolic extracts of aerial parts exhibited remarkable anti-arthritic action. The protein denaturation was also found to be maximum at 75.293 \pm 0.735 and 79.956 \pm 0.9 % at a dose of 500 µg/mL by protein denaturation egg albumin and bovine serum albumin method, respectively.

Keywords: Adiantum venustum D. Don, Anti arthritic activity, Ethanolic extract, In vitro, Pharmacognstical evaluation, Physiochemical screening

Asian Pac. J. Health Sci., (2022); DOI: 10.21276/apjhs.2022.9.4S1.11

INTRODUCTION

Rheumatoid arthritis is a chronic inflammatory autoimmune joint disease. This disease can cause damage of cartilage and bone as well as disability.^[1] Pain, swelling, morning stiffness, warmth, redness, and limits in the functions of the joints are the common symptoms of RA.^[2,3] Treatment of disease involves measuring of disease activity with composite indices and applies a treatment-to-target strategy. Conventional, biological, and new non-biological disease-modifying antirheumatic drugs are commonly used in the treatment of RA.^[4-6] The allopathic system of medicine for rheumatoid arthritis uses two conventional lines of the treatment. Current therapies for the treatment of RA generally focused on anti-inflammatory action. Although NSAIDs, DMARDs, and corticosteroids are highly efficient drugs in the treatment of rheumatoid arthritis, they have mild to serious side effects.^[7-9] The major adverse drug reactions (ADRs) related with NSAIDs are gastrointestinal (ulceration or bleeding) and cardiovascular (myocardial infraction) effects. Gastrointestinal (GI) toxicity and upper GI adverse events such as perforation, ulceration, and bleeding are occurred in about 20% of patients taking long-term NSAIDs. Therefore, use of a safe medicine in the treatment of RA is still matter of concern and search of safe drugs for the treatment of rheumatoid arthritis for chronic use is still going on.[10-12]

The medicinal plants are commonly used in traditional medicine. In the past few decades, very intense pharmacological studies have been investigated for medicinal plants.^[13-16] The main aim of the present investigation was to study the *in vitro* anti-arthritic in ethanolic extracts of *Adiantum venustum* D. Don.

MATERIALS AND METHODS

Plant Material

The plant parts (stems and leaves) of *A. venustum* D. Don. were collected from the local market, Bhopal. The plant material

Department of Pharmacognosy, School of Pharmacy, LNCT University, Kolar Road, Bhopal, Madhya Pradesh, India.

Corresponding Author: Vaishali Somani, School of Pharmacy, LNCT University, Kolar Road, Bhopal, Madhya Pradesh, India. E-mail: vaishalirathi1981@gmail.com

How to cite this article: Somani V, Jain A, Singhai AK. Pharmacognostic, Phytochemical Investigations, and *In Vitro* Anti-arthritic Activity of *Adiantum venustum* D. Don. Asian Pac. J. Health Sci., 2022;9(4S1):72-77.

Source of support: Nil.

Conflicts of interest: None.

Received: 12/05/2022 Revised: 18/06/2022 Accepted: 25/06/2022

was authenticated by the Department of Botany, Government Dr. Shyama Prasad Mukherjee College, Bhopal. A voucher specimen was deposited in the herbarium of the Department. The plant materials (leaves and stem) were air dried at room temperature under shade and then powdered to a fine grade using a laboratory scale mill and kept in air tight plastic bag until use.

Pharmacognostic Evaluation

Macroscopic evaluation

Ariel plant parts of *A. venustum* were subjected to color, odor, taste, determination of shape, size, surface characteristics, and appearance.

Microscopic evaluation

For microscopical examinations, aerial parts of *A. venustum* was soaked overnight in water, cut, cleared with chloral hydrate solution and water, and stained with a drop of hydrochloric

^{©2022} The Author(s). This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

acid and phloroglucinol solution and mounted in glycerin and observed under microscope. Photomicrographic images were taken using camera^[17] (Nicon Coolpix L 24).

Powder Microscopy

Dried aerial parts of *A. venustum* were powdered and bleached for 30 min. Slides were prepared and examined under microscope fitted with a camera^[18] (Nicon Coolpix L 24).

Color Reactions

Small quantity of powder of crude drug was treated with different chemical reagents and change in color was observed.^[19]

Fluorescence Nature of Powder

Powdered crude drug was passed through sieve no. 120 and was treated with different chemical reagents and observed under day light, UV, UVB, and day light.^[20]

Physicochemical Evaluation

Physicochemical values such as the foreign organic matter, percentage of total ash value, acid insoluble, water soluble and sulfated ash value, moisture content, foreign organic matter, foaming index, swelling index, and extractive values were performed according to the WHO guidelines on quality control methods for medicinal plant materials.^[21-23]

Preparation of Extract

All the powdered plant materials (leaf and stem) were subjected to continuous Soxhlet with petroleum ether, benzene, chloroform, ethanol (90%), and aqueous after concentration and drying of extract in vaccum desicators.

Preliminary Phytochemical Screening

Preliminary qualitative phytochemical screening of all the extracts for the detection of various active ingredients was carried out using standard conventional procedures.^[24]

Evaluation of Anti-arthritic Effect of *A. venustum* on Inhibition of Protein Denaturation Using Egg Albumin

The reaction mixture (5 mL) included egg albumin (0.2 mL), phosphate buffered saline, 2.8 mL (pH = 6.4), and 2 ml of *A. venustum* ethanolic extract and diclofenac sodium at various concentrations (100, 200, 300, 400, and 500 µg/mL), respectively. Equal volume of double-distilled water served as control. The mixtures were incubated at 37 ± 2°C in a biochemical oxygen demand incubator for 15 min and then heated at 70°C for 5 min. Their absorbance was measured at 660 nm.^[25,26] The percentage inhibition of protein denaturation was appraised using under mentioned formula:

Percentage inhibition = [Abs control–Abs test sample \div Abs Test Control] × 100

Abs = Absorbance

Evaluation of Anti-arthritic Effect of *A. venustum* and *Oxalis corniculata* on Inhibition of Protein Denaturation Using Bovine Serum Albumin

Protein denaturation assay was done according to the method described by Gambhire *et al.* with some modifications as described in Gunathilake *et al.* The reaction mixture (5 mL) consisted of 0.2 mL of 1% bovine albumin, 4.78 mL of phosphate buffered saline (PBS, pH = 6.4), and 0.02 mL of *A. venustum* ethanolic extract and diclofenac sodium at various concentrations (100, 200, 300, 400, and 500 µg/ml), respectively, and the mixture was mixed and was incubated in a water bath (37°C) for 15 min, and then the reaction mixture was heated at 70°C for 5 min. After cooling, the turbidity was measured at 660 nm using a UV/VIS spectrometer. Phosphate buffer solution was used as the control.^[27,28] The percentage inhibition of protein denaturation was calculated using the following formula:

% inhibition of denaturation = $100 \times (1 - A2/A1)$

Where A1 = Absorption of the control sample and A2 = Absorption of the test sample.

RESULTS AND **D**ISCUSSION

Pharmacognostic Evaluation

Macroscopic evaluation

Morphology of the aerial parts of *A. venustum* was done. Dried stems were blackish in color while leaves were green in color. The stems were 13–14 cm in size while leaves were 3–5 mm. Stems were straight with nodes while leaves were triangular and fan shaped. Leaves were petiolate and not lobed, upper margin was rounded and dentate, non-reticulate venetion. It occurs as ferns. It has aromatic odor with no taste.

Microscopic evaluation

Transverse section of aerial parts of *A. venustum* showed epidermis consists of closely packed cells with single layer. No intercellular space was found. Endodermis is indistinct. The xylem consists of small vessels and parenchyma. The pith in the center is large and made up of thin walled parenchymatous cells. The stele was observed in the center. Thick cuticle was present along with ground tissues which were circular in shape with no intracellular space [Figure 1].

Powder Microscopy

The powder was dark brown in color with aromatic odor and with no taste. On microscopic examination, the powder showed wavy epidermis, parenchyma cells, phloem, fiber, trichome, brownish matter, and crystals [Figure 2].

Color Reactions

The behavior of *A. venustum* powder on treatment with different chemical reagents showed dark brown when powder was as such, black with Conc. H_2SO_4 light brown with 1N HNO₃ yellowish-green with picric acid (saturated), dark brown with acetic acid, brown with 5% iodine, green with 5% FeCl₃ dark green with 10% NaOH and drop of CuSO₄ solution, brown with 40% NaOH and

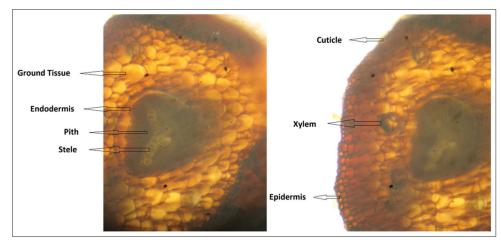


Figure 1: T.S. of aerial part (stem) of Adiantum venustum

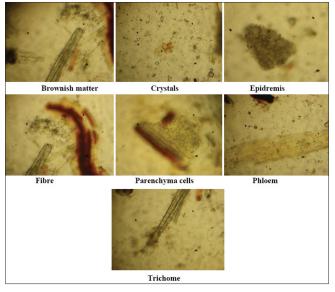


Figure 2: Powder microscopy of arial part (Stem) of Adiantum venustum

10% lead acetate, black with acetic acid and Conc. H_2SO_4 , blackishbrown with Conc. HNO_3 and excess of ammonia, and blackishbrown with Acetic Acid and traces of FeCl₃ and transferred to Conc. H_2SO_4 [Table 1].

Fluorescence Nature

The fluorescence characteristics of powder after the treatment with different reagents emitted various color radiations under ultraviolet light [Table 2].

Physicochemical Evaluation

The results obtained for various physicochemical parameters of *A. venustum* are presented in Table 3. From the table, it can be seen that the loss on drying was found to be $9.13\% \pm 0.532$, total ash value obtained was $16.15\% \pm 0.312$, acid insoluble ash value obtained was $5.0\% \pm 0.707$, water soluble ash value obtained was $4.81\% \pm 0.838$, sulfated ash value obtained was $1.44\% \pm 0.111$, water

	Table 1: Behavior	of powder with different	chemical reagents
--	-------------------	--------------------------	-------------------

Treatment	Color of stems and leaves
	of Adiantum venustum
Powder as such	Dark brown
Powder+Conc. H ₂ SO ₄	Black
Powder+1N HNO ₃	Light brown
Powder+Picric acid (saturated)	Yellowish-green
Powder+Acetic acid	Dark brown
Powder+5% lodine	Brown
Powder+5% FeCl ₃	Green
Powder 10% NaOH+drop of CuSO	Dark green
solution	
Powder 40% NaOH+10% lead	Brown
acetate	
Powder+Acetic acid+Conc. H ₂ SO ₄	Black
Powder+Conc. HNO ₃ +excess of	Blackish-brown
ammonia	
Powder+Acetic acid+traces of	Blackish-brown
FeCl3 and transferred to Conc.	
H ₂ SO ₄	

 Table 2: Fluorescence nature of powder of stems and leaves of

 Adiantum venustum under ultraviolet (UV) and visible radiations

Adiantani venustani un			Taulations
Treatment	UV	UV B	Day light
Powder as such	Brownish-green	Colorless	Dull green
Powder+1N NaOH in	Brownish-black	Colorless	Dark brown
methanol			
Powder+1N NaOH in	Dark brown	Colorless	Dark brown
water			
Powder+50% HCl	Light brown	Colorless	Brown
Powder+50% HNO3	Dark brown	Colorless	Brown
Powder+50% H ₂ SO ₄	Dark brown	Colorless	Brown
Powder+1 N NaOH in	Blackish-brown	Colorless	Dark brown
methanol+Nitrocellulose			
in amyl acetate			
Powder+1 N NaOH in	Chocolate brown	Colorless	Dark brown
water+Nitrocellulose in			
amyl acetate			
Powder+1 N	Dark brown	Colorless	Dark brown
HCI+Nitrocellulose in			
amyl acetate			

soluble extractive value obtained was $1.22\% \pm 0.003$, foreign organic matter obtained was very low, swelling index gave no significant result, and foaming index was <100.

Preliminary Phytoprofile of Aerial Parts (Stems and Leaves) of *A. venustum*

A. venustum plant powder was subjected to successive solvent extraction. The different extracts obtained with their % yield, color, and consistency are recorded in Table 4.

Preliminary Phytochemical Screening of *A. venustum*

The extracts obtained from successive solvent extraction process were then subjected to various qualitative chemical tests to determine the presence of various phytoconstituents such as alkaloids, carbohydrates, proteins, amino acids,

Table 3: Physicochemical parameters of powder of aerial parts (stems
and leaves) of Adiantum venustum

weight basis (%W/W)* 9.13%±0.532 16.15%±0.312 5.0%±0.707 4.81%+0.932
16.15%±0.312 5.0%±0.707
5.0%±0.707
4 0 1 0/ 1 0 0 2 0
4.81%±0.838
10.83%±0.849
1.44%± 0.111
$1.22\% \pm 0.003$
0.03 g
No significant result
<100

*Average of three determination±SD. N=3

flavonoids, steroids, glycosides, saponins, and phenolics [Table 5].

In Vitro Anti-arthritic Activity by Inhibition of Protein Denaturation Method

The effects of ethanolic extract of plant parts (leaf and stem) of *A. venustum* on inhibition of protein denaturation are shown in Table 6 and Graph 1. Extracts of plant samples at different concentrations (dose levels) provided significant protection against denaturation of proteins. The maximum percentage inhibition was found 75.293 \pm 0.735 at 500 µg/mL. It possesses significant activity comparable with that of the standard diclofenac sodium. The most of the investigators have reported that denaturation of protein is one of the cause of rheumatoid arthritis. Production of auto-antigens in certain rheumatic diseases may be due to *in vivo* denaturation of proteins Mechanism of denaturation probably involves alteration in electrostatic, hydrogen, hydrophobic, and disulfide bonding.

Similarly, the inhibitory effects on protein denaturation are shown in Table 7 and Graph 2. The present findings exhibited a concentration dependent impediment of protein denaturation by *A. venustum* as well as diclofenac sodium throughout the concentration range (100–500 µg/mL). Crude extract demonstrated 79.956 \pm 0.9% inhibition of protein denaturation at 500 µg/mL, which was near to diclofenac, that is, 89.233 \pm 0.780 at 500 µg/mL. From the results of the present study, it can be stated that ethanolic extracts of all the plant parts of *A. venustum* are capable of controlling the production of

Table 4: Extracts obtained with their % yield, color, and consistency of Adiantum venustum

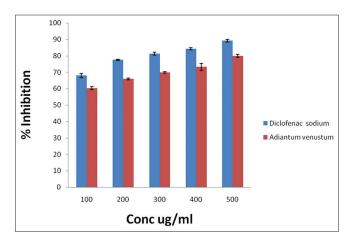
Extracts	Petroleum ether	Benzene	Chloroform	Ethanol	Aqueous
Physical appearance	Greenish-brown sticky	Brown sticky	Brown sticky	Brown sticky gum	Brown syrup
% yield	3.20	2.18	3.24	6.12	11.08

Active constituents test	Petroleum ether extract	Benzene extract	Chloroform extract	Ethanol extract	Aqueous extract
Alkaloids					
Dragondorff's test	+	+	+	+	+
Wagner's test	+	+	+	+	+
Hager's test Carbohydrates	+	+	+	+	+
Molisch's test	+	+	+	+	+
Barfoed's test Proteins	+	+	+	+	+
Biuret test Amino acids	-	-	-	-	-
Ninhydrin test Flavanoids	-	-	-	-	-
Shinoda test	+	+	+	+	+
Alkaline reagent test Steroids and Trit erpenoids	+	+	+	+	+
Salkowski test Glycosides	+	+	+	+	+
Borntrager's test	+	+	+	-	+
Legal's test	+	+	+	+	+
Baljet's test Saponin glycosides	+	+	+	+	+
Froth formation test Phenolic compounds (Tannins)	+	+	+	+	+
Ferric chloride test	+	+	+	+	+

Table 6: Percentage inhibition of protein denaturation using egg albumin by standard drug (diclofenac sodium) and plant extract

Conc. (µg/ml)	% inhibition of protein denaturation		
	Diclofenac sodium*	Adiantum venustum*	
100	64.4±0.817	57.4±0.863	
200	73.146±0.803	62.96±0.401	
300	75.996±0.431	66.273±0.846	
400	79.603±1.074	70.613±1.185	
500	82.86±1.325	75.293±0.735	

*Average of three determination±SD. N=3


Table 7: Percentage inhibition of protein denaturation using BSA by standard drug (diclofenac sodium) and various plant extract

Conc. (µg/ml)	% inhibition of protein denaturation		
	Diclofenac sodium*	Adiantum venustum*	
100	67.943±1.233	60.25±0.861	
200	77.566±0.377	65.87±0.547	
300	81.263±0.882	69.926±0.458	
400	84.296±0.753	73.253±2.16	
500	89.233±0.780	79.956±0.9	

*Average of three determination±SD. N=3. BSA: Bovine serum albumin

Graph 1: Percentage inhibition of protein denaturation using egg albumin by standard drug (diclofenac sodium) and plant extract *Adiantum venustum*

Graph 2: Percentage inhibition of protein denaturation using bovine serum albumin by standard drug (diclofenac sodium) and plant extract *Adiantum venustum*

auto antigen and inhibits denaturation of protein in rheumatic disease.

CONCLUSION

It has been found that stems were blackish in color while leaves were green in color in the morphology. No intercellular space was found in microscopic evaluation. The stele was observed in the center. Fluorescence characteristics of powder emitted various color radiations under ultraviolet light. Various physicochemical evaluation such as total ash, water soluble ash, and sulfated ash were determined. Denaturation of proteins is a well-documented cause of inflammation. As part of the investigation on the changes in the anti-inflammatory activity, the ability of extracts on protein denaturation was studied. The ethanolic extract A. venustum showed maximum anti-inflammatory and anti-arthritic activities at 500 µg/mL, which was parallel to diclofenac at 500 µg/mL. The plant contains many secondary metabolites, for example, flavonoids, sitosteroids, alkaloids, tri-terpenoids, and phenolics. Hence, proper isolation of the active principles might help in the findings of new lead compounds in the fields of anti-arthritic and anti-inflammatory drug research. This established a significant scope to develop a broad spectrum use of A. venustum in herbal medicine and as a base for the development of novel potent drugs against inflammations and arthritis.

REFERENCES

- 1. Mahajan N, Kaur J, Rawal S, Sharma A, Sen K, Baboo S. Adult rheumatoid arthritis-a review. Int J Pharm Res Dev 2010;2:1-9.
- Mobasheri A, Batt M. An update on the pathophysiology of osteoarthritis. Ann Phys Rehabil Med 2016;59:333-9.
- 3. Silman AJ, Pearson JE. Epidemiology and genetics of rheumatoid arthritis. Arthritis Res 2002;4:265-72.
- Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res 2018;6:1-15.
- Kennedy J, Roll JM, Schraudner T, Murphy S, McPherson S. Prevalence of persistent pain in the U.S. adult population: New data from the 2010 national health interview survey. J Pain 2014;15:979-84.
- Van Den Berg WB, Bresnihan B. Pathogenesis of joint damage in rheumatoid arthritis: Evidence of a dominant role for interleukin-I. Baillieres Best Pract Res Clin Rheumatol 1999;13:577-97.
- Majithia V, Geraci SA. Rheumatoid arthritis: Diagnosis and management. Am J Med 2007;120:936-9.
- Smolen JS, Steiner G. Therapeutic strategies for rheumatoid arthritis. Nat Rev Drug Discov 2003;2:473-88.
- Solomon DH, Husni ME, Wolski KE, Wisniewski LM, Borer JS, Graham DY, et al. Differences in safety of nonsteroidal anti-inflammatory drugs in patients with osteoarthritis and patients with rheumatoid arthritis: A randomized clinical trial. Arthritis Rheumatol 2018;70:537-46.
- Chandrasekar R, Chandrasekar S. Natural herbal treatment for rheumatoid arthritis-a review. Int J Pharm Sci Res 2017;8:368-84.
- 11. Goel A, Kulshrestha S. Review on Anti-Rheumatoid arthritis potential of medicinal plants. Int Cur J Res Rev 2021;13:16-32.
- 12. Kaur A, Nain P, Nain J. Herbal plants used in treatment of rheumatoid arthritis: A review. Int J Pharm Pharm Sci 2012;4:44-57.
- Soeken KL, Miller SA, Ernst E. Herbal medicines for the treatment of rheumatoid arthritis: A systematic review. Rheumatology (Oxford) 2003;42:652-9.
- Ghasemian M, Owlia S, Owlia MB. Review of Anti-inflammatory herbal medicines. Adv Pharmaco Sci 2016;2016:1-11.
- Choudhary M, Kumar V, Malhotra H, Singh S. Medicinal plants with potential anti-arthritic activity. J Intercult Ethnopharmacol 2015;4:147-79.
- Lindler BN, Long KE, Taylor NA, Lei W. Use of herbal medications for treatment of osteoarthritis and rheumatoid arthritis. Medicines (Basel) 2020;7:1-18.

- 17. Khandelwal KR. Practical Pharmacognosy. 19th ed. New Delhi: Nirali Prakashan; 2008. p. 149-64.
- Kokate CK. Practical Pharmacognosy. 4th ed. New Delhi: Vallabh Prakashan; 2003. p. 122-17.
- Hashmi S, Ahmad F, Husain W. Botanical and Physico-chemical Standardization of Isqueal (*Urginea indica* Kunth.), A multi-action drug of Unani system. Hamdard Med 2003;43:102-6.
- 20. Kokoski CJ, Kokoski RJ, Salma FJ. Fluorescence of powdered vegetable drugs under ultraviolet radiation. J Am Pharm Asso Am Pharm Assoc 1958;47:715-7.
- 21. The Ayurvedic Pharmacopoiea of India, Part I. Vol. 2. New Delhi: Government of India Ministry of Health and Family Welfare; 1999. p. 191-2.
- 22. Rathi V, Rathi JC, Sahu Y, Gupta AP. Tamizharasi S, Pharmacognostical evaluation and phytochemical screening of whole plant of *Adiantum venustum*. J Afri 2017;4:336-41.

- 23. World Health Organization. Quality Control Methods for Medicinal Plants Material. Geneva: World Health Organization; 1998.
- 24. Rashid MA. Pharmacognostical study of *Unani* herbal drug "Paridoshan" (*Adiantum venustum* D.DON). Hippo J Unani Med 2012;7:69-78.
- Alamgeer, Uttra AM, Hasan UH. Anti-arthritic activity of aqueousmethanolic extract and various fractions of *Berberis orthobotrys*. BMC Complement Altern Med 2017;17:1-16.
- 26. Gambhire M, Juvekar A, Wankhede S. Evaluation of the antiinflammatory activity of methanol extract of *Barleria cristata* leaves by *In vivo* and *In vitro* methods. Int J Pharmacol 2009;7:1-6.
- Gunathilake KD, Ranaweera KK, Rupasinghe HP. Influence of boiling steaming and frying of selected leafy vegetables on the *In vitro* antiinflammation associated biological activities. Plants (Basel) 2018;7:22.
- 28. Gunathilake KD, Ranaweera KK, Rupasinghe HP. *In vitro* Antiinflammatory properties of selected green leafy vegetables. Biomed 2018;6:107.